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Homologous flavoproteins from the photolyase (PHR)/crypto-
chrome (CRY) family use the FAD cofactor in PHRs to catalyze DNA
repair and in CRYs to tune the circadian clock and control devel-
opment. To help address how PHR/CRY members achieve these
diverse functions, we determined the crystallographic structure of
Arabidopsis thaliana (6-4) PHR (UVR3), which is strikingly (>65%)
similar in sequence to human circadian clock CRYs. The structure
reveals a substrate-binding cavity specific for the UV-induced DNA
lesion, (6-4) photoproduct, and cofactor binding sites different
from those of bacterial PHRs and consistent with distinct mecha-
nisms for activities and regulation. Mutational analyses were
combined with this prototypic structure for the (6-4) PHR/clock CRY
cluster to identify structural and functional motifs: phosphate-
binding and Pro-Lys-Leu protrusion motifs constricting access to
the substrate-binding cavity above FAD, sulfur loop near the
external end of the Trp electron-transfer pathway, and previously
undefined C-terminal helix. Our results provide a detailed, unified
framework for investigations of (6-4) PHRs and the mammalian
CRYs. Conservation of key residues and motifs controlling FAD
access and activities suggests that regulation of FAD redox prop-
erties and radical stability is essential not only for (6-4) photoprod-
uct DNA repair, but also for circadian clock-regulating CRY func-
tions. The structural and functional results reported here elucidate
archetypal relationships within this flavoprotein family and sug-
gest how PHRs and CRYs use local residue and cofactor tuning,
rather than larger structural modifications, to achieve their diverse
functions encompassing DNA repair, plant growth and develop-
ment, and circadian clock regulation.

blue-light photoreceptor � circadian clock � electron transfer �
flavoprotein � FAD

In response to sunlight, homologous flavoproteins from the pho-
tolyase (PHR)/cryptochrome (CRY) family, found in bacteria to

humans, use the same FAD cofactor to carry out their dissimilar
functions (1, 2). CRYs are regulatory proteins that control growth
and development in plants and tune biological clocks in animals (3).
In contrast, PHRs are DNA repair proteins that revert UV-induced
photoproducts into normal bases to maintain genetic integrity (4).
Most prokaryotes have a single PHR, the class I or DNA PHR that
repairs cyclobutane pyrimidine dimers (CPD), but some eukaryotes
including plants possess two (Fig. S1): class II PHR for CPD repair
and (6-4) PHR to repair pyrimidine–pyrimidone (6-4) photoprod-
ucts. Sunlight exposure makes DNA repair systems including PHRs
essential for plants (5, 6): mutant plants with defective class II CPD
PHR (UVR2) or (6-4) PHR (UVR3) exhibit impaired UV resis-
tance (UVR) (7, 8).

CPD and (6-4) PHRs share many functional similarities, but have
evolved distinct substrate specificities and mechanisms (9–12).
CPD and (6-4) photoproducts (Fig. S2) both arise from UV-
induced [2�2] cyclo-addition reactions between adjacent pyrimi-

dines; yet the CPD reaction product between 2 C5OC6 double
bonds is stable, whereas the product of the C5OC6 bond with the
C4 carboxyl or amino group rapidly rearranges into the (6-4)
photoproduct (13). To maintain genetic integrity, (6-4) PHR must
therefore catalyze not only covalent bond cleavage like the CPD
PHR reaction, but also amino or hydroxy group transfer (14). Thus,
the (6-4) PHR mechanism is complex and hypothesized to require
light energy and simple electron donation from FAD (9, 14).

Mammalian CRYs most closely resemble (6-4) PHRs (Fig. 1 and
Fig. S1) (15); yet human cells do not exhibit light-activated photo-
product repair (photoreactivation) (16). Instead, mammalian
CRYs are critical components of circadian clock circuitry (17–19)
that act in conjunction with PERIOD proteins to repress activity of
the heterodimeric CLOCK/BMAL1 transcription factor (20, 21).
Mammalian CRYs are crucial for maintaining robust circadian
rhythms: deletion produces complete arrhythmicity (18, 19). In
vertebrates having both (6-4) PHR and clock CRY proteins, (6-4)
PHR does not disturb the circadian clock, and conversely clockwork
CRYs do not appear to directly contribute to DNA repair (22, 23).
Clockwork CRYs from different species have also been implicated
in diverse processes, including nonvisual photoreception, sun com-
pass orientation, and time–place learning (24–31). Yet, delays in
mechanistic characterization of clock CRYs, caused in part by
technical difficulties in protein expression and thus structure de-
termination, have hampered biological understanding. In contrast,
structures representative (Fig. S1) of plant-specific (32) and DASH
CRYs (33), class I CPD PHRs (34–37) ,and other DNA base repair
enzymes (38) have aided functional investigations. In the (6-4)
PHR/clock CRY (6-4/clock) cluster, sequence analyses alone have
failed to distinguish protein functions, so 3D structural analyses are
needed to advance understanding.

Here, we present the crystallographic structure of Arabidopsis
thaliana (6-4) PHR with bound FAD cofactor and phosphate. The
overall structure is similar to that of CPD PHRs. However, com-
bined structural and mutational analyses reveal distinct functional
regions and motifs: the 3D adjacent phosphate-binding and Pro-
Lys-Leu (PKL) protrusion motifs; the sulfur loop near the external
end of the Trp electron-transfer pathway; and the C terminus,
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absent in previous structures. Because of the high sequence simi-
larities within the 6-4/clock cluster, our structure provides a de-
tailed, unified framework for understanding (6-4) PHR substrate
recognition and repair mechanisms and for functional mapping of
mammalian CRYs.

Results and Discussion
Conserved and Distinguishing Features of the (6-4) Photolyase Struc-
ture. To address questions regarding (6-4) PHRs and their rela-
tionships to other PHR/CRY family members, we determined the
crystallographic structure of A. thaliana (6-4) PHR (At64PHR),
which confers UV protection to plants and shares �65% sequence
similarities to human and mouse CRY1 and CRY2 (Fig. 1). The
At64PHR structure, refined to 2.7-Å resolution with good residual
errors (Rwork � 20.2% and Rfree � 23.8%) and geometry (Table S1),
revealed the conserved fold and detailed structure, including the
C-terminal extension, active-site channel, cofactor environment,
Trp electron-transfer pathway, phosphate-binding site, and novel
functional motifs (Fig. 2). Overall, the N-terminal �/� domain
exhibits a variation of the Rossman nucleotide-binding fold and is

tethered via a long connecting loop to the C-terminal helical
domain (Fig. 2A). The helical domain has a conserved binding site
for an unusual U-shaped conformation of the FAD cofactor
beneath a long positively charged groove. Superposition of the
At64PHR structure with other PHR/CRY structures (Fig. 2B)
highlights the following novel features: the 3D adjacent phosphate-
binding (Asp-235–Ala-256) and PKL protrusion motifs (Tyr-282–
Leu-300); the sulfur loop (Met-318–Cys-324) near the external end
of the Trp electron-transfer pathway; and a C-terminal helix
(Asp-508–Asp-522, turquoise in Fig. 2A), not characterized in
previous structures. The At64PHR structure, combined with se-
quence and phylogenetic analyses (Fig. 1 and Fig. S1) provided an
informed basis for a detailed 3D model of human CRY1 (Fig. 2C)
and for functional testing of the identified motifs (Fig. 2 B, D, and
E) in the 6-4/clock cluster.

The phosphate-binding motif diverges from other known PHR/
CRY structures via the short �9 helix to partially constrict entrance
to the substrate-binding cavity with 310 helix �4 (Fig. 2A). This 310
helix is centered on Pro-245; the Lys-246 to Glu-243 salt bridge
orients the intervening Lys-244 side chain inwards (Fig. 3) to

Fig. 1. Sequence alignment among
(6-4) PHRs and clock CRYs in the �-heli-
cal domain, highlighting sequence con-
servation, functional motifs, and site-
directed mutants. Sequence-conserved
(white on red) and similar (red on
white) residues are boxed. At64PHR
secondary structure and amino acid
numbering are shown at the top. Yel-
low circles show residues binding FAD
with main and side chains (red and blue
rims, respectively). Gray circles show the
Trp triad. Squares show mutational
sites for CLOCK/BMAL1 repression as-
says (see Fig. 5).
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Fig. 2. At64PHR structure revealed conserved fold with motifs unique to 6-4/clock CRYs. (A) N-terminal �/� (magenta) and C-terminal �-helical (blue) domains
connected by a long, belt-like, Pro-rich loop, and followed by an extra C-terminal helix (cyan). (B) Superimposed structures of At64PHR (blue), plant-specific CRY1
(green), CRY DASH (tan), and CPD PHR (yellow) highlighting novel functional motifs: phosphate binding, PKL protrusion, and sulfur loop. (C) 3D homology model
for human CRY1 (dark blue) based on At64PHR structure (gold), with balls marking Ser phosphorylation site (red), Trp electron-transfer triad (gold), hydrophobic
switch (blue), and residues tuning FAD (green). Lys residues (gray balls) show core of NLS and potential targets for ubiqutination. (D) Electrostatic potential
surface for At64PHR shows positively charged DNA-binding groove and nearby hydrophobic patch. (E) Conservation map for 6-4/clock cluster highlights features
universal to 6-4/clock cluster: groove, FAD environment, and phosphate-binding motif. In D and E At64PHR is tilted backward from the shared orientation of
A–C to see into the DNA-binding groove.
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hydrogen bond with FAD adenine N7. This motif encircles a
phosphate ion (Fig. 4), which hydrogen bonds to the Glu-243 main
chain and Trp-238 side chain, conserved in the 6-4/clock cluster.
Conformational changes in the phosphate-binding motif upon
phosphate binding or release thus have the potential to indirectly
tune both FAD redox properties and substrate binding.

The adjacent PKL protrusion motif (Figs. 1 and 2B) is centered
on the projecting cis-peptide-linked double Pro-290 Pro-291 that

also constricts access to the cavity. The PKL protrusion motif
replaces an �-helix in other PHR/CRY structures. This motif begins
with a Lys-rich, solvent-exposed, flexible loop (B values 50–75 Å2)
closed by ring stacking of Tyr-282 with His-288. The motif ends in
a hydrophobic surface patch centered on Leu-296 (Figs. 2D and 4).
The PKL protrusion motif thus has the potential to link intermo-
lecular interactions with substrate access.

The sulfur loop (Met-318–Cys-324) protrudes outward between
FAD and the C terminus (Fig. 2B), near the Trp triad electron-
transfer pathway (see below and Fig. 2C). The sulfur-containing
Met and Cys residues at the beginning and end of this motif are
invariant in the 6-4/clock cluster (Fig. 1), but are not conserved in
other branches of the PHR/CRY family. Finally, unlike previous
PHR/CRY structures, the At64PHR structure has an additional
ordered helix (�22) at the C terminus (Fig. 2 A and B).

(6-4) Photoproduct Binding and Repair. The At64PHR structure
exhibits new active-site structural features relevant to photoproduct
binding and repair. The At64PHR cavity for binding the damaged
photoproduct is narrower and deeper than that of the CPD PHRs
(34–36): the phosphate-binding and PKL protrusion motifs con-
strict the approach to FAD (Fig. 2) and several bulky residues line
the channel. Within the cavity, the invariant His-His-Leu-Ala-Arg-
His motif specific to the 6-4/clock cluster (Fig. 1) is important for
catalysis. The second (At64PHR His-364) and final (His-368) His
residues of this motif (Fig. 4B) are critical for DNA repair (9, 12),
as shown by the loss of activity upon mutation (Fig. S3). Catalytic
His-364 is oriented for electron transfer by a hydrogen bond to the
FAD hydroxyl group, whereas His-368 (replacing the conserved
Met characteristic of CPD PHRs) hydrogen-bonds with Tyr-422
(Fig. 3B). Intervening Leu-365 (Arg in most other PHR/CRY
family members) and Leu-409 flank the His-368 ring to form the
wall of the cavity leading to FAD. Substitution of the intervening
Leu-365 by Ala, to remove van der Waals’ contacts between protein
and substrate, diminishes binding affinity (9). Directly across the
positively charged DNA-binding channel (Fig. 2D) from the phos-
phate-binding motif, Arg-420 (Fig. 2E) is conserved in most PHRs
and CRYs, but is replaced with His in clockwork CRYs of the
6-4/clock cluster (Fig. 1). In the structure of the CPD PHR complex
with DNA (34), the equivalent Arg substitutes for the flipped
photoproduct in stabilizing the complementary DNA strand. Nev-
ertheless, this conserved Arg is not essential for DNA repair as
mutant At64PHR proteins bearing either His (like clock CRY) or
Ala substitutions for Arg-420 retain the ability to recognize and
repair the 6-4 photoproduct (Fig. S4). Two aromatic residues
(Trp-301 and Trp-408) proposed to play a key role in substrate
recognition by CPD PHR (34, 35, 37) are conserved in At64PHR
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Fig. 3. Phosphate and FAD binding sites. (A) Omit electron density map for At64PHR residues (purple contours) binding phosphate anion (green contours).
(B) Stereoview of FAD-binding site residues in At64PHR specific to the 6-4/clock cluster (red labels) and universal to the PHR/CRY family (blue labels) shown with
hydrogen bonds (dashed lines) to FAD (yellow with red oxygen and blue nitrogen atoms).

Fig. 4. Environmental tuning of FAD for diverse functions of the 6-4/clock
cluster. (A) The phosphate-binding motif (top) with bound phosphate (or-
ange) and PKL protrusion motif (bottom) partially block substrate access (from
left) to FAD (yellow). The PKL protrusion motif varies in sequence at CRY NLS
(KVRK/R) equivalent to At64PHR 284-DVKK-287 (labeled in white, with se-
quence difference in red/blue) and the hydrophobic switch (bottom center),
where At64PHR Leu-296 (red label) becomes aromatic (blue label), to distin-
guish CRY1(Tyr) from CRY2(Phe). (B) Conserved phosphate-binding motif
(Asp-235–Ala-256) in 6-4/clock cluster encircles and hydrogen bonds (dashed
lines) to phosphate anion (orange) in At64PHR, but can likely bind phosphor-
ylated serine (blue circle) of clock CRYs (equivalent to At64PHR Ala-256, red
label). Conformational changes in this motif may impact substrate access to
FAD (from right) and binding near the signature His–His–Leu–Ala–Arg-His
motif (lower right, with His residues labeled) required for catalysis. Helices and
loops are shown with blue ribbons and loops, respectively, and pertinent side
chain with ball-and-stick models, are colored by atom type.
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to form perpendicular walls of the substrate-binding cavity. Inter-
estingly, to accommodate the His-368 and Leu-409 side chains, the
At64PHR Trp-408 indole ring is flipped 180° relative to the
equivalent ring in CPD PHR structures, but matching the similarly-
flipped Tyr in the crystal structure of the cyanobacterial CRY
DASH (33). Thus, as also found in other proteins (39), both the
conformation and the type of a residue can be key to diversity within
a conserved protein framework.

Cofactor Binding and Tuning. In At64PHR flavin isoalloxazine and
adenine moieties of FAD are in close proximity (Fig. 3B) forming
a U-shaped conformation, which resembles that in CPD PHR
structures. This highlights their shared use of light-activated re-
duced FAD in photoproduct repair. The isoalloxazine ring is
anchored by main-chain hydrogen bonds from Asp-396 and Asp-
398, and tuned by the Asn-402 side chain, which hydrogen bonds to
redox-active FAD N5. The Arg-367 to Asp-396 salt bridge across
the isoalloxane ring system orients the Arg side-chain guanidinium
moiety to stabilize the FAD semiquinone radical at the C4a position
(Fig. 3B). This salt bridge is invariant in all PHR/CRY family
members. Residues Thr-258 through Ser-261 form main-chain
hydrogen bonds with the FAD phosphate oxygens. Additionally,
the Thr-257, Ser-261, and Trp-361 side chains hydrogen-bond with
the FAD phosphate, ester, and sugar moieties, respectively. Unique
to the At64PHR structure, and presumably all members of the
6-4/clock cluster (by sequence identity), is the charged hydrogen
bond from Lys-244 (Arg in mouse/human CRYs) of the phosphate-
binding motif to solvent-exposed FAD adenine N7. Lys-244 is
well-ordered in all 3 At64PHR molecules (Fig. 3A), and the Lys
side-chain NZ atom is further anchored by hydrogen bonds with the
Gln-298 side-chain amide and FAD phosphate O2. Thus, proteins
of the 6-4/clock cluster exhibit novel cofactor-tuning interactions
with the FAD adenine N7.

A second cofactor, serving as a light-harvesting antenna, has
been identified in some prokaryotic CPD PHRs. Two distinct
antenna binding sites, for 5,10-methenyltetrahydrofolic acid
(MTHF) and 8-hydroxy-5-deazaflavin (8-HDF), were identified
from crystal structures of Esherichia coli and Anacystis nidulans
CPD PHRs, respectively (35, 36). Other flavins including FMN and
FAD can also bind in the 8-HDF site (40, 41). In the At64PHR
structure, both potential antenna-binding sites are present, but
display some sequence and structural changes. Tyr-117 (6-4/clock
Tyr or Phe) replaces the carboxylate side chain required for MTHF
binding (Glu-109 in E. coli CPD PHR) (42), and the binding groove
is �2 Å wider. In contrast, the binding site for the 8-HDF
isoalloxazine ring in A. nidulans CPD PHR is well conserved in the
At64PHR structure (and 6-4/clock sequences), although the Tyr-
117 side chain partially occupies the position for the flexible 8-HDF
ribityl side chain. Thus, our structure supports a flavin, rather than
MTHF antenna for the 6-4/clock cluster.

The Trp triad responsible for electron transfer for photoactiva-
tion, or light-induced reduction of FAD, in CPD PHR (4) is
conserved in At64PHR (inside Trp-406 adjacent to FAD, middle
Trp-383, and outside Trp-329), but with modifications (Fig. S5). In
particular, the outside Trp (Trp-329) is buried, not solvent-exposed
as in other structurally-characterized PHR/CRY family members.
Strikingly both the outside (Trp-329) and middle (Trp-383) tryp-
tophans of this electron-transfer pathway form side-chain hydrogen
bonds from their ring nitrogen atoms to the sulfur atoms of Met-318
and Cys-324, respectively. Met-318 and Cys-324 lie at the ends of the
sulfur loop motif and are unique to and conserved in the 6-4/clock
cluster. These electron-rich sulfur atoms have the potential to
influence electron transfer and the stability of radical intermediates
along the Trp electron-transfer pathway to FAD.

Structural Implications for Circadian Clock Cryptochromes. The high
sequence similarity (Fig. 1) and phylogenetic clustering (Fig. S1) of
the 6-4/clock cluster allow us to use the At64PHR structure to better

model (Fig. 2C) and evaluate structure-based functions for verte-
brate CRYs, including intermolecular interactions governing as-
sembly, disassembly, cellular localization, and degradation (via
ubiquitination; ref. 43) of clock components. Residues conserved in
the 6-4/clock cluster (Fig. 2E) form the phosphate-binding motif,
line the substrate-binding cavity above FAD, contribute positive
charge to the DNA binding groove, and generate a hydrophobic
patch (Fig. 2D), suggesting that these regions are important for
clockwork CRY functions. However, structural variations within
these conserved regions may point to their functional specialization.
Specific similarities and differences in the phosphate-binding and
PKL protrusion motifs constricting access to FAD, and in the FAD
environment itself, suggest functional specialization of mammalian
CRYs: (i) a surface-exposed signal for nuclear localization, (ii) regu-
lation by phosphorylation, (iii) FAD tuning by the protein environment,
and (iv) a hydrophobic switch differentiating CRY1 and CRY2.

CRYs have a positively charged monopartite nuclear localization
signal (NLS sequence KVRK/R; Fig. 1) directing nuclear translo-
cation of the CRY/PERIOD complex for repression of CLOCK/
BMAL1 function (44, 45). In (6-4) PHRs, the equivalent sequence
(At64PHR 284-DVKK-287) is surface-exposed on the PKL pro-
trusion motif (Fig. 4A). Asp-284 replaces a positively charged Lys
to disrupt the NLS, highlighting potential differences in the mech-
anism of nuclear entry between At64PHR and mammalian CRYs.

Phosphate Binding and Phosphorylation. The bound phosphate an-
ion (Fig. 3A) hydrogen-bonded with the Glu-243 backbone and
Trp-238 side chain (Fig. 4) helps to create the ‘‘constriction’’ of
access to FAD. This phosphate-binding motif is conserved in the
6-4/clock cluster (Figs. 1 and 2E) and, in vivo, may recognize a
phosphorylated amino acid. Both PHRs and CRYs can become
phosphorylated (46–48). Intriguingly, the phosphate-binding motif
is 3D adjacent to the conserved serine phosphorylation site of
mammalian CRYs identified through MAPK treatment (47). This
serine, equivalent to At64PHR Ala-256, is also found in some (6-4)
PHRs (Figs. 1 and 4B). A phospho-Ser at this position may mimic
the interactions of the phosphate anion with the phosphate-binding
motif, enforcing its phosphate-binding conformation and subse-
quent functional consequences. Ser phosphorylation and phos-
phate ion binding near conserved Ala-256 may offer a control
mechanism to tune FAD (Figs. 3A and 4), ultimately leading to
change in protein function. Phosphate binding by the Glu-243 main
chain helps position Lys-244 to salt bridge with the adenine moiety
of FAD (Fig. 3). In the phosphate-free form of clock CRYs, the
serine could hydrogen-bond with the neighboring His-363, the first
residue of the signature His–His–Leu–Ala–Arg–His motif where
the second His (His-364) is hydrogen-bonded to 2� hydroxyl group
of the flavin linker (Figs. 3B and 4B).

Phospho-Ser-mimicking mutations at this site in mouse CRY1
attenuate CRY repression of the CLOCK/BMAL1 complex (Fig.
5B). The shorter ‘‘tight’’ Asp mutant (Cry1S247D) is more effective
than the longer ‘‘loose’’ Glu mutant (Cry1S247E) for inactivation of
this CRY function, whereas the Ala mutant (Cry1S247A) functions
more similarly to wild type. These results, plus the prior observation
that the MAPK pathway may inhibit CRY repression function
without altering the protein stability (47), implicate conformational
flexibility of the phosphate-binding motif, without bound phosphate, in
the repression function of circadian clock-regulating CRYs.

FAD Tuning in Cryptochrome Function. We used mutational analyses
to investigate functional roles of conserved and novel structural
features for FAD tuning. Interestingly, even subtle modification of
the invariant Asp–Arg salt bridge positioned to stabilize the FAD
radical (Fig. 3B) has significant functional consequences. A Dro-
sophila mutant designated cryb bearing a single substitution from
the salt-bridging Asp to Asn fails to detect light (26). The equivalent
mouse CRY1 mutant (Cry1D387N) produces a severe functional
defect in the CLOCK/BMAL1 repression (Figs. 1 and 5C) (49).
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When we substituted the Arg salt-bridge partner to Lys in CRY1
(Cry1R358K), repression was also impaired (Figs. 1 and 5C), further
reinforcing the crucial role of the salt bridge in CRY function. Because
this twisted Arg to Asp salt bridge orients a terminal Arg nitrogen to
stabilize FAD semiquinone radical formation at C4a (Fig. 3B), these
mutational results suggest thatFADredoxreactionsandradical stability
are universally important for function in both photosensing and tran-
scriptional repression for all PHR/CRY family members.

Two specific residues in direct contact with FAD are not con-
served between At64PHR and clockwork CRYs: Lys-244 (Arg in
mammalian CRYs) makes a salt bridge with FAD adenine N7, and
Thr-257 (Pro in mammalian CRYs) hydrogen-bonds to FAD
phosphate. However, mutational swapping of Lys and Arg (or Thr
and Pro) between At64PHR and mouse CRY1 at these positions
did not significantly impact either the DNA repair or CLOCK/
BMAL1 repression functions, respectively. This finding implies
either other conserved residues interacting with FAD may contrib-
ute to clockwork CRY function or the Lys/Arg-244 interaction with

FAD may only be relevant for integrating the phosphorylation state
of the protein (see previous section).

The key residue interacting with the redox-active FAD N5
position of FAD is characteristic of each branch of the PHR/CRY
family: Asn in class I CPD PHRs, DASH CRYs, all members of the
6-4/clocks cluster (At64PHR Asn-402), whereas the residue is
substituted to Cys in insect-specific CRYs and to Asp in plant-
specific CRYs (50–52). Our mouse CRY1 mutants, in which this
Asn was substituted with Cys or Asp (Cry1N393C,Cry1N393D), mim-
icking insect- or plant-specific CRY, showed attenuated repression
of CLOCK/BMAL1 (Fig. 5D), supporting the key role of this
residue in modulating FAD function in circadian clock CRYs.

The Hydrophobic Switch for Clock Cryptochromes. Modeling of hu-
man CRY sequences onto the backbone of the At64PHR crystal
structure (Fig. 2C) produced significant clashes in hydrophobic
packing near the At64PHR Leu-296 position in the PKL protrusion.
Unlike (6-4) PHRs, the circadian clock-regulating CRYs conserve
an aromatic residue here that distinguishes between the 2 types of
mammalian CRYs: Tyr in CRY1 and Phe in CRY2 (Figs. 1 and
4A). This aromatic residue participates in a hydrophobic patch (Fig.
2D) buttressing the rim of the substrate-binding cavity, behind the
constriction. Our substitution of this Tyr or Phe with Leu (Cry1Y287L

or Cry2F305L) in mouse CRYs, to mimic the local structure of
At64PHR, reduced repression of CLOCK/BMAL1 activity (Fig. 5
E and F). Furthermore, mutational swapping of the Tyr and Phe
between CRY1 and CRY2 highlighted important differences (53)
in their repression function. The Cry1Y287F mutant mimicking
CRY2 lost as much repression activity as the Cry1Y287L mutant
mimicking the (6-4) PHRs. Conversely, Cry2F305Y mimicking CRY1
was a better repressor than Cry2F305L mimicking the (6-4) PHRs
(Fig. 5 E and F). Overall, these results suggest that subtle structural
changes caused by a single (or few) amino acids tuning local regions,
rather than drastic surface modifications, produce the specific
functions that distinguish the DNA repair (6-4) PHRs from the
circadian CRYs, and CRY1 from CRY2.

General Implications. These combined structural and mutational
results reveal functional motifs characteristic of the phylogenetically
defined 6-4/clock cluster, which encompasses (6-4) PHRs from all
species, vertebrate clockwork CRYs and the related insect CRY2
proteins, and other closely-related homologs. Analyses of the
At64PHR structure therefore help clarify enigmatic structure/
function relationships within the PHR/CRY family, by identifying
conserved vs. distinguishing features of (6-4) and CPD PHRs, and
especially of (6-4) PHRs and circadian clock CRYs. Taken together,
our analyses reveal that tuning of the FAD cofactor by its specific
protein environment is pivotal to function for proteins of the 6-4/clock
cluster. Circadian clock CRY function is also regulated by the hydro-
phobic switch between Phe and Tyr in the hydrophobic patch near the
positively charged DNA-binding groove. This switch likely mediates
CRY function through the structurally-identified constriction, formed
by the phosphate-binding and PKL protrusion motifs. Besides these
motifs, the CRY C terminus may assist in CLOCK/BMAL1 repression
through FAD-regulated intermolecular interactions, which may explain
its ability to impart repressive function to a noncircadian PHR (54). The
combined results presented here reveal that the substrate recognition
site, specific for (6-4) photoproducts, the cofactor binding sites, and the
Trp electron-transfer pathway show differences from those of bacterial
PHR/CRY, consistent with a distinct DNA repair mechanism. Our
results furthermore show that the major functional differences within
the PHR/CRY family are controlled, not by large structural modifica-
tions, but by local residue tuning that, in particular, impacts FAD
chemistry and conformation at the binding cavity.

Materials and Methods
Full details of the methods used are presented in SI Text.

Fig. 5. Activity of CRY mutants in repressing CLOCK/BMAL1 transcription. (A)
Negative and positive controls for CLOCK/BMAL transcription assayed by
luciferase activity after transient transfection. (B) Phospho-Ser mimicking
mutations in the phosphate-binding motif interfere with repression by CRY1.
(C) Salt bridge stabilizing FAD radical is essential. (D) Asn side-chain hydrogen
bond to FAD N5 tunes repression by CRY1. (E and F) Tyr specific for CRY1 (E)
and Phe specific for CRY2 (F) replace At64PHR Leu-296 hydrophobic switch in
the PKL protrusion motif to discriminate function. (E) CRY1 mutations mim-
icking CRY2 lose repression, like those mimicking (6-4)PHR. (F) CRY2 mutations
mimicking CRY1 maintain repression.
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Cloning, Expression, and Purification. A gene encoding At64PHR (UVR3) was
isolated from cDNA and expressed in E. coli. At64PHR was purified with Blue
Sepharose, DNA cellulose, hydroxyl apatite, and monoS column chromatogra-
phy. Mutant clones were constructed with QuikChange.

Crystallization, Data Collection, and Structure Determination. At64PHR crystals
were grown in space group P212121 with unit cell dimensions a � 111.7 Å, b �

140.1 Å, c � 144.6 Å and 3 molecules per asymmetric unit. Crystals grew by
hanging drop vapor diffusion at 4 °C from mixtures of protein [�25 mg/mL in 50
mM Tris�HCl (pH 8.0), 50 mM NaCl, 10% glycerol, 10 mM DTT] and well [100 mM
Hepes (pH 6.6), 25 mM potassium acetate, 20% polyethylene glycol 6000] solu-
tions. After X-ray diffraction data collection at Advanced Light Source beamline
8.3.1 (Berkeley, CA), phases were determined by molecular replacement using as
a search probe a structure-based (6-4) PHR model overlaid with PHR and CRY
crystal structures. Crystallographic statistics are summarized in Table S1.

Assays. For DNA binding, base flipping, and DNA repair assays, deoxyoligonu-
cleotides containing (6-4) photoproduct were synthesized and hybridized to

complementary strand (9, 11, 55). To assay the activity of mouse CRY mutants in
repressing BMAL/CLOCK transcription, 293T cells were reverse-transfected in
96-wellplates with 250 ng of plasmid DNA mixtures including 25 ng of Per1-
Luciferase reporter construct, 50 ng of CMV-mBMAL1, 120 ng of CMV-hCLOCK,
and 0–5 ng of CMV-CRY plus filler DNA. Twenty-four hours later, cell extracts
were assayed for luciferase activity.
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